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About myself

l Qt developer since Qt3/Qtopia times, 10+ years experience

l Development Lead with basysKom GmbH in Darmstadt

l Strong focus on all things (Embedded) Linux

l Enthusiasm for systems programming
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Why this talk?

l Memory management in QML is seen as (mostly) automatic
— Convenient
— Eliminates certain types of errors

l So why bother?
— Intransparent
— Less control
— Demanding applications
— Resource constrained devices

l Goal: get a conceptual understanding how this works

Why this talk?
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Scope

l Qt5.5 is used as reference

l Earlier versions are referenced when pointing out important changes

l Qt4/Qt5 <5.2 are not covered (anything before the V4 engine) 

l A Linux platform is implicitly assumed 
— most insights can be applied to other platforms too

l This talk focuses on things related to memory management itself
— Expect some glaring omissions and hand waving for other areas!
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Before we get started...
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Basics of memory management

l Virtual memory
— Each process has its own address space

l Only certain segments are actually mapped
— The dreaded segfault!

l Mappings can be created through the mmap() syscall

l Mappings have different roles

— Text: program code
— BSS/Data: (uninitialized) static variables
— Stack(s)
— Heap(s)
— ...
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The process heap

l Managed through a malloc implementation
— Typically part of your libc

l Acquires memory from the OS either by
— growing a special heap-mapping via sbrk()
— creating additional mappings via mmap()

l Keeps memory in its own pool

l malloc()/new is served from this pool

l free()/delete gives back to this pool

l The malloc implementation can try to give memory back to the OS
— Can't move around allocations of C/C++ programs
— Might focus on performance 
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Memory management for QML & JS

l QML is a declarative language used to describe user interfaces
— hierarchy and relationship of UI elements/objects

l JavaScript can be embedded to implement UI logic

l How are these two distinct parts handled by the engine?

l How does the memory management work for these two?
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QML memory management
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QML objects – the very basics

l QML object types are implemented in C++
— Non-visual QML elements derive directly from QObject
— Visual QML elements derive from QQuickItem (which is derived from QObject)
— E.g. a „Rectangle {}“ is implemented by the C++ class QQuickRectangle

l The QML source describes how to assemble a tree of QObjects

l QML objects are allocated on the normal process heap

l Each object has a parent (leaving out the root)
— the parent cannot be changed (from the QML side)
— not to be confused with the visual parent
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Methods to create QML objects

l Static:
— QQuickView::setSource(QUrl(“...”))
— QQmlApplicationEngine::load(QUrl(“...”))
— ...

l Dynamic:
— Loader
— Qt.createComponent()/component.createObject(parent)

l Typically a static “shell” is dynamically loading sub-components on demand

l All these methods create a tree of QML objects

l An object that gets destroyed will also (recursively) destroy its children
— The same mechanism as in Qt

l No garbage collection involved (for the QML objects itself)!



A deep dive into QML memory management 
Frank Meerkötter

07.10.2015
 12/42

QML properties

l Rectangle { property int foo; property var bar }

l Properties defined in QML source need to
— be stored somewhere
— integrate with the rest of the metaobject system

l QQmlVMEMetaObject takes care of that

l typed properties (non-var) are stored on the process heap (QQmlVMEVariant objects)

l var properties are stored as QV4::Values in an QV4::Array which resides on the JS heap

l This will change with Qt5.6
— QQmlVMEVariant weighs in at 8*sizeof(void*) + sizeof(int) => 36/72 bytes
— Everything will be stored in a QV4::Value (8 bytes)
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QML properties

l What happens to a property when its object is deleted?
— The parts allocated on the process heap are directly deleted with the object
— The parts stored on the JS-side are orphaned and left for garbage collection

l What happens to a QML object stored in a var property?
— Still cleaned up via the QObject hierarchy, no GC
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Is the GC ever collecting QObjects? 

Yes, if an object has
— QQmlEngine::JavaScriptOwnership
— no parent
— no remaining JavaScript references
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Bonus question

l Will the GC ever collect a visible QObject?

l No, the visual parent will keep its visual children alive
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Wrap up

l QML objects
— are allocated from the process heap
— deallocated via delete/deleteLater

l Children are cleaned up via the Qt object hierarchy

l QML allows you to control the life-time of objects
— (typically) no garbage collection involved

l Make use of it!
— Loader/dynamic object creation
— Unload elements no longer needed
— Make sure to call .destroy() on dynamically created components
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JavaScript memory management
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JavaScript

l JavaScript in QML can by used in
— property bindings
— signal handlers
— custom methods
— standalone

l To support this the QML engine implements a JS host environment
— The V4 engine since Qt5.2

l The code for the various JavaScript types is written in C++  

l Instances are allocated from a separate garbage collected JS heap
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JavaScript types

l A JavaScript type can be something visible in 
the host environment
— Object, Array, Date, RegEx

l Or it can be something internal
— plumbing of the JS host environment

— QV4::MemberData
— QV4::ExecutionContext
— ...

— QML/JS integration
— QV4::QQmlBindingWrapper
— QV4::QObjectWrapper
— ...
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The JavaScript heap

l Implemented in QV4::MemoryManager

l QV4::MemoryManager::allocData(std::size_t) 
allocates storage for JS objects
— There are 32 buckets (16, 32, 48, ..., 512 bytes)
— Allocations are rounded up to the next multiple 

of 16
— "Segregated-fits-allocation”

l Buckets are backed by chunks of memory 
which are allocated on demand
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The JavaScript heap

l Memory for the buckets is not aquired 
through malloc

l The WTF::PageAllocation platform abstraction 
is used instead
— mmap'd for a POSIX system
— VirtualAlloc on Windows

l Exception: anything larger than 512 bytes is a 
special case and just malloc'd/free'd

l "Segregated-fits-allocation”:
— Robust against external fragmentation
— Some internal fragmentation
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Bucket management

l Chunks are chopped into n-sized items which are put on the freelist for a given bucket

l When the freelist is empty
— either a new chunk is allocated from the OS
—  or the garbage collector is triggered

l A newly allocated chunk is committed memory 

l The only way to deallocate JS objects is to run the GC
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JavaScript heap: interesting properties
l The size of chunks being allocated for a certain bucket follows a growth strategy

— The first chunk has 64KB
— Size of each new allocation for a certain bucket is always doubled

l In recent Qt versions (Qt5.3) this series is capped at 2MB, earlier versions would only cap at 
64MB
— high potential to waste (committed!) memory

l Since Qt5.3 the exact behaviour can be fine tuned

l QV4_MM_MAXBLOCK_SHIFT
— Allows to modify the growth cap

l QV4_MM_MAX_CHUNK_SIZE
— Allows to set the size from where chunk growth starts
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How does the GC work?

l Triggered either through
— an allocation (depending on usage metrics)
— manually (JS/C++) 

l Runs in the main thread, blocks the application

l The implementation can be found in QV4::MemoryManager

l Tracing GC/mark&sweep

l Two phases



A deep dive into QML memory management 
Frank Meerkötter

07.10.2015
 25/42

GC: Phase 1

l Starting from certain known „roots“ all reachable objects are marked
— "Mark" sets a marker bit in each object
— everything not marked is garbage and can be free'd

l JS stack allows for a non-recursive implementation

l Initially a conservative GC, now an exact GC (the default since Qt5.2)
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GC: Phase 2

l Sweep is now walking all chunks 
— All objects marked, have their mark cleared
— All objects not marked are destroyed, nulled and put back into a freelist

l Chunks which become empty can be given back to the OS
— New with Qt5.5, earlier versions are not able to ever get rid of a peak!

l On engine shutdown a last sweep is done without a mark
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Objectives of the GC

l The GC is freeing unused objects from the JS heap

l It does not take into account the overall memory usage of the host process

l Works as expected, but can exhibit some interesting behaviour:
— A QV4::String holds internally a QStringData*, the actual string data is on the C++ heap
— A large string will look small to the GC, but will have a considerable footprint on the C++ heap
— The GC will never clean up, the host memory usage will go through the roof
— This has improved with Qt5.5
— The GC metric is extended to take into account the real weight of QV4::Strings
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Should I manually trigger the GC?

l In general: no

l Exceptions to the rule:

l the application is idle (and no one is looking) 

l after unloading a large QML component
— Ensure to pass through the eventloop once, before calling gc()
— Try to run malloc_trim(0) to encourage malloc to give memory back to the OS
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Wrap up

l JavaScript objects
— are allocated from a separate JavaScript heap

— with the exception of large items
— deallocated only via the GC

— also large items are gc'd

l The GC is triggered either
— through utilisation metrics
— manually
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Tools for memory profiling
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Tools for memory profiling

l How much memory is used overall?

l How much memory is used on the QML-side?

l How much memory is used on the JavaScript-side?

l What caused an allocation?

l Let's review the tools...

l Usage overall
— Various means offered by your specific OS
— /proc/$pid/smaps on Linux for example
— Understand what you are actually measuring

— Virtual memory vs. RSS vs. PSS
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Built-in

l QV4_MM_STATS

l ~2.8MB of memory has been acquired from 
the OS for the JS heap

l ~700KB of it are in use

l 3 mappings have been given back to the OS 
(must be a Qt >= 5.5) 

l Large items (>512 bytes) are not shown
— Added in Qt5.6

l Note: QV4_MM_AGGRESSIVE_GC is an 
internal developer tool

$ export QV4_MM_STATS=1

$ ./myQmlApp 

========== GC ==========

Marked object in 6 ms.

Sweeped object in 3 ms.

Allocated 2883584 bytes in 21 chunks.

Used memory before GC: 1313984

Used memory after GC: 698736

Freed up bytes: 615248

Released chunks: 3

======== End GC ========

...
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QtCreator memory profiler
l The commercial version of Qt has a JavaScript memory profiler

l Upper bar (Memory Allocation) visualizes the memory acquired from the OS
— Mappings and LargeItems
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QtCreator memory profiler

l Lower bar (Memory Usage) visualizes the actual usage by the application
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QtCreator memory profiler

l Profiling information links back to the source
— Often no obvious mapping between an 

allocation and the responsible source location
— Inherent: Qt/JavaScript plumbing, primitives of 

the JS runtime
— Not so clear how to act on this information

l Shines when combined with the other 
timeline information
— Animation

l Does not show the QML-side
— It is a JavaScript profiler after all!
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valgrind/massif/massif-visualizer
l Shows allocations on the process heap

— QML objects are visible
— No link back to the QML source

l No visibility of objects on the JS heap!
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Another perspective
l valgrind --tool=massif –pages-as-heap=yes

l Objects on the JS heap?

l Careful: shows only what triggered the initial allocation, not what is currently stored!
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Wrap up

l Overall memory usage => OS specific methods

l JavaScript memory usage => QV4_MM_STATS, QtCreator

l QML memory usage => Overall usage – JavaScript usage?
— Misleading: Counts all other memory usage as QML memory usage...
— Valgrind/massif can help to break this down further

l No clear mapping between a line of code and the resulting allocation
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Conclusion
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Conclusion

l A conceptual understanding how QML memory management works

l QML: allows you to control the life-time of objects

l JavaScript: No direct control over object life-time

l Memory management has improved throughout Qt5

l Use an up to date version of Qt
— If you can't, be aware of version specific behaviour
— E.g. avoid memory peaks with a Qt < 5.5

l For memory constrained environments
— Less is more (especially for delegates)
— Plan for dynamic object loading/unloading
— Limit the ammount of JavaScript
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Questions?
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