

4

Who we are

basysKom
 Located in Darmstadt & Nürnberg

 Software Engineering Services (Consulting, Training, Coaching & Development)

Myself
 Software Engineer

 torsten.rahn@basyskom.com

5

Our Background

A great deal of experience with Application/
HMI development (Qt & HTML5) and
connectivity (OPC UA/MQTT/REST)

 Software Engineering Services (Consulting, Training, Coaching & Development)
 Focused on industrial applications

7

OpenCV

Open Source Computer Vision Library
 Website: opencv.org

 Current Version: 4.0.1

 Languages: C++ (native), Java, Python

 Platforms: Windows, Linux, Mac OS, iOS and Android

 License: BSD

 2D and 3D feature toolkits

 Egomotion estimation

 Facial recognition system

 Gesture recognition

 Human–Computer Interaction

 Mobile robotics

 Motion understanding

 Object identification

 Segmentation and recognition

 Structure from motion (SFM)

 Motion tracking

 Augmented Reality

8

Qt

Cross-platform software development for embedded & desktop

 Website: qt.io

 Current Version: 5.12

“Classical” Qt Framework
 language: native C++ / Bindings

 compiled

 imperative

Qt Quick
 language: QML (Javascript / CSS / JSON)

 interpreted (compiling optional)

 declarative

QObject

 Cross Platform

 License: Dual-License – Commercial & Open Source

9

Qt Quick and OpenCV

Computer Vision meets modern HMI-Development
 Advantage:

• OpenCV’s computer vision algorithms

• fast and fluid Qt Quick User Interface on embedded

 Challenge:
• Qt and OpenCV are using different

• API patterns
• data structures

Let’s bridge the gap …

10

Qt and OpenCV: Image Format Conversion

Qt and OpenCV are using different storage data types for images
 OpenCV uses a matrix cv::Mat with data stored in GBR channel order in columns and rows

 Channel order for QImage depends on Endianess – except for RGB888 format where it’s always RGB

 GBR RGB via → RGB via QImage::rgbSwapped()

11

Introduction to QML
Concept
 Elements

 ids

 Properties

 Property-Bindings

12

Qt Quick Scenegraph
Concept
 Optimized for requirements

of modern graphics hardware

 Uses OpenGL commands

 Transform nodes encode
affine Transformations as 4x4
matrices

 Geometry nodes ...
• manage geometry buffer

• define material

13

Combining OpenCV with QML

14

CVMat - Implementing a QQuickItem using OpenCV
Inheritance from QQuickItem
 Don’t forget to set the flag ItemHasContents in the ctor

15

CVContours - Finding Contours with OpenCV
Using findContours()
 For preparation we need to convert the image into a binary black-and-white image:

 Alternatively we could call Canny() instead of threshold()

 Afterwards we could call drawContours() or ...

16

Application Example
Live Demo

Our demo application additionally uses
 Qt Quick Controls 2

 Qt Quick Shape API (available since 5.10)

17

LiveCV http://livecv.dinusv.com/

19

Conclusion

Combination of Qt Quick and OpenCV provides a solid foundation for Computer Vision HMIs
 Differences regarding APIs should be taken into account right from the start

 Qt Quick provides flexible means for interaction and UI rendering

 LiveCV provides a great environment for interactive prototyping

20

Weblink Recommendations

Tutorials, Documentation and Examples:
 https://www.elektroniknet.de/design-elektronik/embedded/opencv-und-qt-quick-ein-einstieg-161630.html

 https://www.youtube.com/watch?v=2zTY6CFhP_A

 https://doc.qt.io/qt-5.11/qml-QtQuick-shapes-shape.html

 https://opencv.org/

 https://www.basyskom.com/download/cvqml.zip

